DATA REPORT

AVIAN STUDIES IN THE KUPARUK OILFIELD, ALASKA, 2009

1 Call

a la

with the have bell the

150

ALICE A. STICKNEY BETTY A. ANDERSON TIM OBRITSCHKEWITSCH PAMELA E. SEISER JOHN E. SHOOK

PREPARED FOR Conocophillips Alaska, inc. Anchorage, Alaska

a light

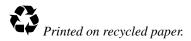
AND

KUPARUK RIVER UNIT

PREPARED BY ABR, INC.-ENVIRONMENTAL RESEARCH & SERVICES FAIRBANKS, ALASKA

AVIAN STUDIES IN THE KUPARUK OILFIELD, ALASKA, 2009

DATA REPORT


Prepared for

ConocoPhillips Alaska, Inc. P.O. Box 100360 Anchorage, Alaska 99510 and The Kuparuk River Unit

Prepared by

Alice A. Stickney Betty A. Anderson Tim Obritschkewitsch Pamela E. Seiser John E. Shook ABR, Inc.—Environmental Research & Services P.O. Box 80410 Fairbanks, Alaska 99708

January 2010

TABLE OF CONTENTS

List of Figures	iii
List of Tables	iv
List of Appendices	iv
Acknowledgments	v
Introduction	1
Conditions in the Study Area	1
Spectacled Eider	3
2009 Results	3
Tundra Swan	20
2009 Results	20
Brant	27
2009 Results	27
Literature Cited	32

LIST OF FIGURES

Figure 1.	The number of cumulative thawing degree-days recorded between 15–31 May and 1–15 June and mean thawing degree-days for those same periods in the Kuparuk Oilfield, Alaska, 1989–2009.	2
Figure 2.	Study area for the Spectacled Eider study in the Kuparuk Oilfield, Alaska, 2009, showing the road system and boundaries of the three Central Processing Facility areas	6
Figure 3.	Daily running totals of Spectacled Eiders recorded during road surveys of the Kuparuk Oilfield, early to mid June, 1993–2009.	7
Figure 4.	Distribution of Spectacled Eider observations during pre-nesting road surveys in the Kuparuk Oilfield, Alaska, 5–18 June 2009	8
Figure 5.	The aerial survey area for Spectacled Eiders in the Kuparuk Oilfield, Alaska, 2009	10
Figure 6.	Distribution of Spectacled Eiders observed on the aerial survey of the Kuparuk Oilfield, Alaska, 10–13 June 2009.	
Figure 7.	Trends in Spectacled Eider densities based on aerial surveys of the Kuparuk River Unit and across the entire Arctic Coastal Plain, June 1993–2008	14
Figure 8.	Locations of Spectacled Eider nests in the Kuparuk Oilfield, Alaska, 2009	16
Figure 9.	The aerial survey areas for Tundra Swans in the Greater Kuparuk Area, Alaska, 2009	22
Figure 10.	Locations of Tundra Swan nests observed in the Kuparuk and Kuparuk South study areas, Alaska, June 2008 and 2009	24
Figure 11.	Numbers of Tundra Swan nests by year in relation to cumulative thawing degree- days between 15 May–15 June, in the Kuparuk study area, Alaska, 1989–2009	25
Figure 12.	Locations of Tundra Swan broods observed in the in the Kuparuk and Kuparuk South study areas, Alaska, August 2008 and 2009	26
Figure 13.	Study area for the aerial survey for brood-rearing/molting Brant between the Colville and Sagavanirktok rivers, Alaska, July 2009	
Figure 14.	Locations and sizes of brood-rearing and molting groups of Brant between the Colville and Sagavanirktok rivers, Alaska, in 1990, 2002, and 2009	

LIST OF TABLES

Table 1.	Annual mean temperatures for May and June and cumulative thawing degree-days for 15 May–15 June, Kuparuk Airport, Alaska, 1989–2009	2
Table 2.	Mean distances of Spectacled Eider observations to oilfield facilities during pre-nesting in the Kuparuk Oilfield, Alaska, 1993–2009	9
Table 3.	Habitat use of pre-nesting Spectacled Eiders in the Kuparuk Oilfield, Alaska, 2009	9
Table 4.	Numbers and densities of Spectacled Eiders recorded during a pre-nesting aerial survey of the Kuparuk Oilfield, Alaska, 10–13 June 2009	11
Table 5.	Numbers and densities of Spectacled Eiders recorded during pre-nesting aerial surveys of the Kuparuk Oilfield, Alaska, 1993, 1995–2009	13
Table 6.	Numbers and fates of eider nests and annual search effort in the Kuparuk Oilfield, Alaska, 1993–2009	15
Table 7.	Numbers of Spectacled Eider nests by location in the Kuparuk Oilfield, Alaska, 1993–2009	17
Table 8.	Distances of Spectacled Eider nests to the nearest water, waterbody, and oilfield infrastructure in the Kuparuk Oilfield, Alaska, 1993–2009.	18
Table 9.	Numbers of Tundra Swans and nests observed during June aerial surveys in the Kuparuk study area, Alaska, 1989–2009	23
Table 10.	Numbers of Tundra Swans and broods observed during August aerial surveys in the Kuparuk study area, Alaska, 1989–1993, 1995–2009.	25
Table 11.	Numbers of brood-rearing and molting groups of Brant observed during aerial surveys in late July and early August along coastal sections between the Colville and Sagavanirktok rivers, Alaska, 1989-2009	30

LIST OF APPENDICES

Appendix 1.	Numbers of Spectacled Eiders counted on road surveys in the Kuparuk Oilfield, Alaska, 5–15 June 2009.	36
Appendix 2.	Nest-site characteristics for successful and failed eider nests in the Kuparuk Oilfield, 2009.	37
Appendix 3.	Numbers of Tundra Swans, nests and broods observed during June aerial surveys in the South Kuparuk study area, Alaska, 1989–2009	38
Appendix 4.	Numbers of Tundra Swans and nests recorded during aerial surveys in the Kuparuk and South Kuparuk study area, Alaska, 20–25 June 2009	39
Appendix 5.	Densities of Tundra Swans nests and adults observed during June aerial surveys in the Kuparuk study area, Alaska, 1989–2009.	40
Appendix 6.	Numbers of Tundra Swans and broods recorded during aerial surveys in the Kuparuk and South Kuparuk study areas, Alaska, 18–21 August 2009	41

ACKNOWLEDGMENTS

We thank Caryn Rea, Senior Staff Biologist, ConocoPhillips Alaska, Inc., for her support for the Kuparuk avian studies, and thank the Kuparuk Field Environmental staff for their help with logistical and field support. Sandy Hamilton, Bob Eubank, Robert Wing, and Ken Morris, all of Arctic Air Alaska, Inc., Fairbanks, were our able pilots for the aerial surveys.

Many ABR employees assisted with fieldwork. Our thanks to John Rose for his diligence during the eider and nesting swan aerial surveys, to Alex Prichard for the brood-rearing swan and goose staging surveys, and to Julie Parrett for the nesting swan survey. Thanks also to John Rose, Lauren Attanas, Adrian Gall, Andrew Cyr, JJ Frost, Jeremy Maguire and Jennifer Boisvert for the many hours walking the tundra in search of nesting eiders, to Dorte Dissing for GIS map preparation, Will Lentz for his logistic support, and to Pamela Odom for report preparation.

This report is dedicated to the memory of Betty Anderson who led the project ably from its inception in the early 1990s until her untimely death in October 2009. Her insights in all aspects of these avian studies will be greatly missed.

INTRODUCTION

From 1988–1999, ABR, Inc., conducted avian studies for ARCO Alaska, Inc., in the Kuparuk Oilfield on the Arctic Coastal Plain of Alaska. In 2000–2009, we continued this work under the new operator of the Kuparuk Oilfield, ConocoPhillips Alaska, Inc. (formerly PHILLIPS Alaska, Inc.). The emphasis of this study in recent years has been long-term monitoring of the distribution. abundance, and productivity of selected waterfowl populations. Our studies in 2009 focused on three species: Spectacled Eider (Somateria fischeri), Tundra Swan (Cygnus columbianus), and Brant (Branta bernicla). These species were selected for study in the oilfields for several reasons. The Spectacled Eider was listed by the U.S. Fish and Wildlife Service (USFWS) as a threatened species in 1993 and its population status on the North Slope is being monitored in support of the recovery efforts for this species. Annual surveys for Spectacled Eiders began in the Kuparuk Oilfield in 1993. The Tundra Swan has been identified as an indicator species for the health of waterbird populations and their wetlands systems in the oilfields by federal and state agencies. Tundra Swans also use traditional nesting areas that may be affected by oilfield disturbances or new developments. Tundra Swan surveys in the Kuparuk Oilfield began with a preliminary reconnaissance in 1988 and have continued with annual systematic surveys ever since. Finally, Brant populations have been declining in Alaska for over a decade and this species is also considered to be sensitive to disturbance, particularly during the molting and brood-rearing periods. Brant surveys were initiated in the Kuparuk Oilfield in 1988 and have continued annually since then, with some modifications in seasonal and geographic scope (see Brant chapter).

This report summarizes the results of surveys in 2009 for these species. Unlike annual reports prior to 2005, this data report briefly summarizes objectives and annual survey results for each species, including supporting tables and figures, but without further analysis or historical context. Brief methods are provided for the surveys conducted in 2009 (Appendix 1). The reader is referred to presentation of detailed methodologies, analysis, and discussion of results in the 2003 and 2004 annual reports (Anderson et al. 2004, 2005).

CONDITIONS IN THE STUDY AREA

Birds returning to the Kuparuk Oilfield encountered variable breeding conditions in 2009. Mean monthly temperatures in 2009 were 2°C warmer in May but 1°C colder in June than the long-term (21-year) means for those months (Table 1; www.ncdc.noaa.gov/oa/ncdc. Temperatures in late April were html). unseasonably warm, causing the rivers to start melting. However, temperatures cooled off in early May, slowing the rate of melt (Deb Heebner, BP (Alaska), Inc., pers. comm.). Breakup on the major rivers was earlier than average. Breakup on the Colville River was eight days earlier than average, based on peak water levels on 23 May, compared to the historical peak (Michael Baker, Jr. Inc. 2009). Peak breakup on the Kuparuk River occurred around 14 May, 2 weeks earlier than the historical average of 28 May. Snow was half gone by the end of May and all shallow lakes had melted; the remaining snow melted quickly in the first week of June which was warmer than normal. During the period of waterfowl arrival and peak nest initiation (15 May-15 June), 88 cumulative thawing degree-days were recorded, the sixth warmest in 21 years (range = 19-128 thawing degree-days; Table 1, Figure 1). The high number of cumulative thawing degree-days recorded for this period was influenced by the warm temperatures in the first 12 days of June, when 53 thawing degree-days were recorded, more than half of the total. However, following this unseasonably warm period, temperatures dropped and for 10 days in mid-late June, average temperatures were \leq 3°C and winds were 18–29 mph. This cold, windy period occurred during early incubation for Spectacled Eiders, mid-late incubation for Tundra Swans and late incubation for Brant.

^{*}Tables and figures are grouped at the end of each section in the order they are cited in text.

	Mean Temp	perature (°C)	Cumulative Thawing
Year	May	June	Degree-Days ^a
1989	-7.7	4.3	26
1990	-2.8	5.7	56
1991	-2.5	4.5	22
1992	-5.7	4.6	75
1993	-4.4	4.2	42
1994	-6.3	3.0	54
1995	-2.6	4.7	59
1996	-2.7	6.9	128
1997	-4.8	4.5	60
1998	-2.1	7.0	120
1999	-5.0	3.1	32
2000	-9.3	6.6	37
2001	-10.8	4.1	54
2002	-2.2	4.4	91
2003	-4.6	3.2	34
2004	-5.5	7.2	38
2005	-4.7	3.1	19
2006	-3.1	8.1	117
2007	-7.5	4.2	46
2008	-2.6	7.1	107
2009	-2.9	3.9	88
21-year average	-4.7	5.0	62

Table 1.Annual mean temperatures (°C) for May and June and cumulative thawing degree-days for 15
May–15 June, Kuparuk Airport, Alaska, 1989–2009.

^a Thawing degree-days are calculated as the cumulative number of degrees per day above freezing (0°C) for the period 15 May–15 June.

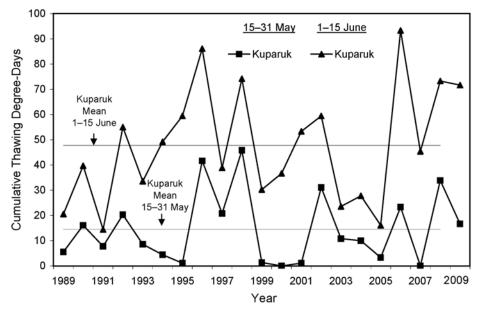


Figure 1. The number of cumulative thawing degree-days recorded between 15–31 May and 1–15 June and mean thawing degree-days for those same periods in the Kuparuk Oilfield, Alaska, 1989–2009.

SPECTACLED EIDER

The Spectacled Eider is one of four species of eiders that breed in arctic Alaska (Bellrose 1976). Spectacled, King (S. spectabilis), and Common (S. mollissima) eiders all nest in the oilfields on Alaska's North Slope (Johnson and Herter 1989). Spectacled Eiders have undergone severe declines in abundance. particularly on the Yukon-Kuskokwim Delta in western Alaska (Kertell 1991, Stehn et al. 1993). Based on this decline in abundance, the Spectacled Eider was listed by the USFWS as a "threatened species" on 9 June 1993 (58 FR 27474–27480) under the Endangered Species Act. The USFWS has also developed a Recovery Plan for the Spectacled Eider (USFWS 1996) that outlines the research needs for promoting the recovery of this species. These needs are being partially met by the annual aerial survey for eiders flown by the USFWS on the North Slope along with USFWS-sponsored research on nesting ecology and reproduction conducted on the YKD and industry-sponsored research on the North Slope (including this study and studies on the Colville River Delta).

In this report, we discuss the results of the 2009 Spectacled Eider surveys in the Kuparuk Oilfield. The 2009 season was the 17th year of road and nest searches and the 16th year of aerial surveys (no aerial survey was flown in 1994). The goals of the Spectacled Eider study include 1) monitoring population trends in the oilfields; 2) identifying important nesting habitats and determining how eiders are distributed relative to these habitats and oilfield infrastructure (roads, processing facilities, and drilling pads); and 3) monitoring the breeding biology and nesting success of eiders to determine if productivity is being negatively affected by oilfield activities or by natural processes. The 2009 study had four objectives to meet these goals:

- conduct road surveys to monitor the distribution and abundance of Spectacled Eiders near facilities in the Kuparuk Oilfield during pre-nesting;
- 2. conduct an aerial survey for breeding pairs of Spectacled Eiders and determine regional distribution and abundance in the Kuparuk River Operating Unit, and compare the results

of the survey with previous ABR aerial surveys (1993, 1995–2008), as well as U.S. Fish and Wildlife Service surveys across the Arctic Coastal Plain, to determine population trends;

- 3. evaluate the relationship between locations of breeding pairs observed during the pre-nesting road surveys and subsequent nest locations, and determine if multiple relocations of breeding pairs help in locating nests; and
- 4. monitor eider nests using time-lapse cameras to evaluate causes of nesting failures (these data are not reported in this summary, but have been archived for future analysis; three time-lapse cameras were deployed in 2009).

2009 RESULTS

- In the Kuparuk Oilfield, a peak count of 21 Spectacled Eiders was recorded during the complete road survey of the oilfield on 9–10 June 2009 (Figure 2; Appendix 2); this count was a 25% decrease from the peak count of 27 eiders on 7-8 June 2008, but equal to the peak count in 2007. Daily running totals for Spectacled Eiders were at the lower range for counts recorded during previous warm years in the Kuparuk study area (Figure 3). While Spectacled Eiders were already present during the onset of road surveys on 5 June, numbers doubled by 7 June, indicating that the surveys were timed well to catch the arrival of these eiders in the oilfield.
- As in previous years, most Spectacled Eiders in 2009 occurred in the Central Processing Facility No. 2 (CPF-2) area of the Kuparuk Oilfield, with observations in that area clustered around the basin complex west of Drill Site (DS)-2V, near DS-2X, west of DS-2T, and a few observations near DS-2G (Figure 4). For the first time since surveys were initiated in 1993, no pre-nesting Spectacled Eiders were seen in the vicinity of DS-2C or DS-2F. As in previous years, Spectacled Eiders also were

observed in the CPF-1 area, primarily in the large basin complex west of DS-1E, but also in a large basin complex northwest of DS-1D, and around KOC. In the CPF-3 area, Spectacled Eiders were seen in the vicinity of Mine Site E and at several locations along the Oliktok Point Road and in wetlands and basin wetland complexes around CPF-3 (Figure 4).

- Spectacled Eiders were located a mean distance of 131.6 m from oilfield infrastructure (roads, pads, and facilities) in 2009, which was lower than the range of mean distances recorded in previous years (range = 160.2–271.8 m; Table 2).
- Spectacled Eiders used a variety of habitat types during pre-nesting (Table 3), but ~50% of all observations (n = 42) were in three major habitats: shallow open water (both with and without islands; 38%) and deep open water with islands (12%). Twenty-six percent of all observations of Spectacled Eiders were in human-modified waterbodies, including drainage impoundments (12%).
- In 2009, an aerial survey was conducted on 10–13 June to locate Spectacled Eiders in the Kuparuk River Unit (Figure 5). During that survey, 26 Spectacled Eiders were counted on the ground in 12 groups (2 additional birds were observed flying: Table 4 and Figure 6). Spectacled Eider densities (non-flying birds only) were 0.04 total birds/km² and 0.02 breeding pairs/km²; these densities were double for total birds and slightly higher for breeding pairs compared to 2008, which were the lowest recorded during the study. Densities of Spectacled Eiders derived from these breeding-pair surveys are reflections of the regional breeding population in the Kuparuk River Unit and may not reflect what is happening in the neighboring Colville River Delta, nor across the Arctic Coastal Plain. For example, Spectacled Eider densities were higher in 2008 than in 2007 on both the Colville River delta (Johnson et al. 2009) and across the Arctic

Coastal Plain (Larned et al. 2009), whereas the reverse was true in the Kuparuk Oilfield. Based on 17 years of aerial surveys, the regional population of Spectacled Eiders in the Kuparuk Oilfield appeared to be relatively stable, although highly variable. The numbers increased slightly following record lows in 2008, however, continued monitoring will help determine if the low numbers in 2008 were an anomaly (Table 5; Figure 7). The long-term population of Spectacled Eiders on the North Slope also has been relatively stable in recent years (Larned et al. 2009).

- In late June 2009, seven Spectacled Eider nests and two probable Spectacled Eider nests (based on identification of contour feathers) were found during searches of 10 locations in the oilfield (Table 6; Appendix 3). While searching for Spectacled Eiders, we also found 12 King Eider (Somateria *spectabilis*) nests, and 5 probable King Eider nests. In 2009. Spectacled Eider nests were located in the CPF-2 area near DS-2C, DS-2T, and DS-2V; in the CPF-1 area near DS-1E; and in the CPF-3 area south of Mine Site E (Figure 8). As in 1993–2008, at least one location supported more than one nesting pair of Spectacled Eiders in 2009 (Table 7). Annual reuse of these areas indicate that traditional "colony sites" are used by Spectacled Eiders in the Kuparuk Oilfield, although some pairs nest singly.
- In all years, Spectacled Eider nests were located close to water. In 2009, the mean distance of nests to the closest water (1.6 m) was lower than the long-term mean (2.0 m, n = 17 years) while the mean distance of nests to the nearest waterbody (mean = 10.5 m) was slightly higher than the long-term mean (10.3 m) (Table 8). For these two measurements, 'water' is defined as any type of water, including ephemeral ponds or flooded tundra, whereas a 'waterbody' is a clearly defined, permanent waterbody, such as a small pond or lake. Nests in 2009, as in previous years, continued to be located relatively far

from the closest oilfield infrastructure (mean = 355 m; range = 108–551 m).

- In 2009, nesting success for Spectacled • Eiders was 56% (5 of 9 nests; Table 6). Nesting success, which was defined as at least 1 egg hatching, was higher than the long-term mean for this study (mean = 47.1%; n = 17 years). A comparison with nesting success for King Eiders indicated that while the long-term mean for nesting success was identical between the species, King Eiders in 2009 experienced poor nesting success (17%) (Table 6). It is uncertain if weather conditions affected eider nesting success in 2009 with different outcomes for Spectacled Eiders compared to King Eiders.
- ٠ In 2009, time-lapse cameras that recorded images every 30 sec were installed approximately 30 m from three Spectacled Eider nests (2 at DS-1E, and 1 at DS-2T). All three nests were successful. At one nest (55.02 at DS1E), a gull visited the nest several times on the last day before the female departed and on one of her breaks, the gull was on the nest for almost 2 minutes. This may have lead to partial predation as only 2 membranes were found during the fate check whereas 4 eggs were found during the initial ground search. At all 3 nests, avian predators (Glaucous Gull, Parasitic Jaeger) visited within 1 hour to scavenge at the nest.

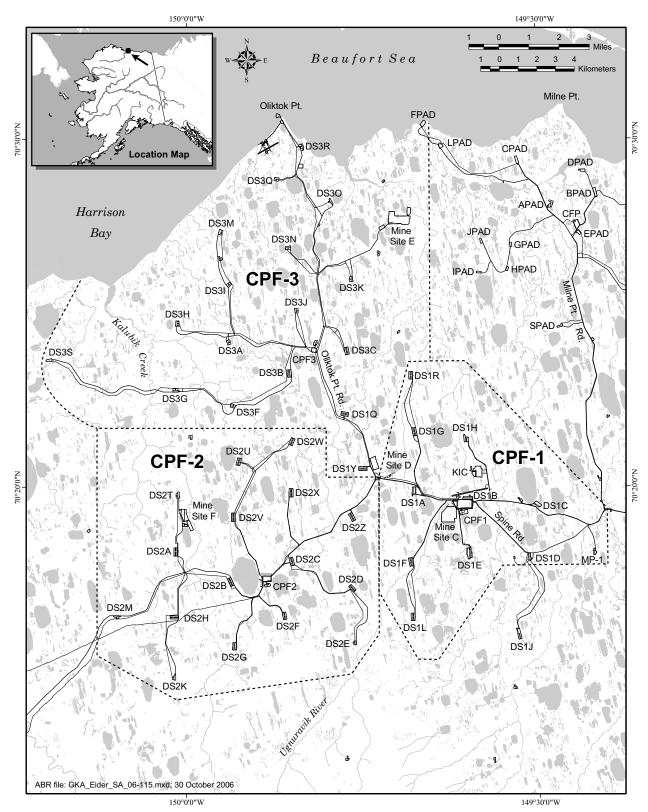


Figure 2. Study area for the Spectacled Eider study in the Kuparuk Oilfield, Alaska, 2009, showing the road system and boundaries of the three Central Processing Facility (CPF) areas.

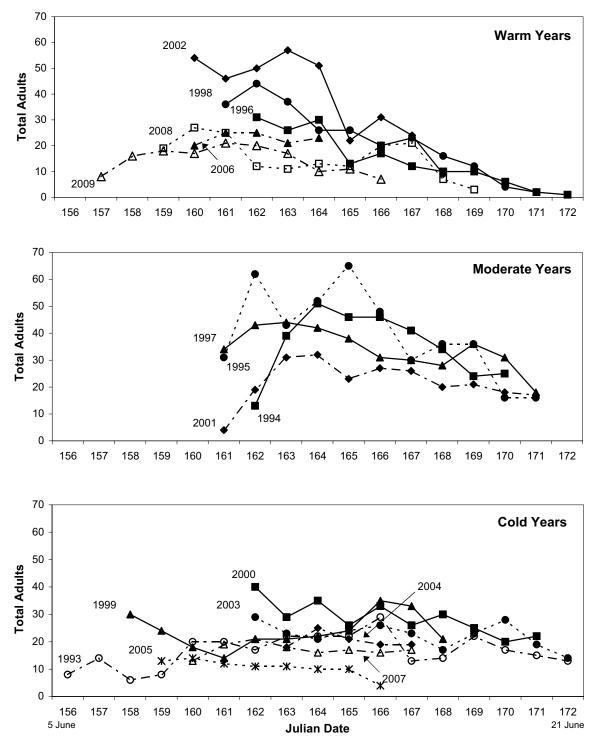


Figure 3. Daily running totals of Spectacled Eiders recorded during road surveys of the Kuparuk Oilfield, early to mid June, 1993–2009. Half of the study area was surveyed each day, thus the running total for the study area was calculated using consecutive days through the sample period. Years were assigned to cold (≤50 cumulative thawing degrees), moderate (>50 and ≤75 cumulative thawing degrees), or warm (>75 cumulative thawing degree days) categories depending on cumulative thawing degree-days between 15 May and 15 June each year.

Spectacled Eider

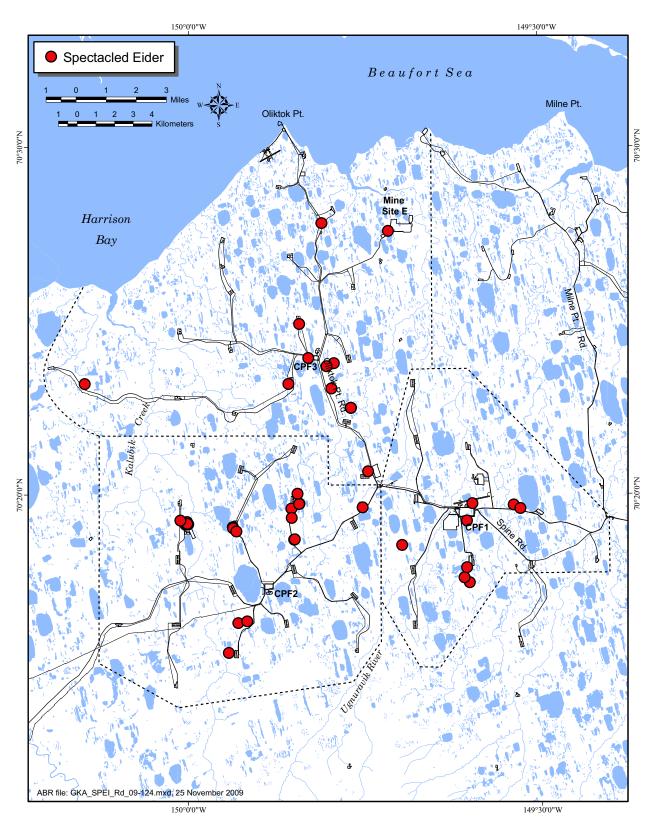


Figure 4. Distribution of Spectacled Eider observations during pre-nesting road surveys in the Kuparuk Oilfield, Alaska, 5–18 June 2009. Dashed areas delineate the CPF-1, CPF-2, and CPF-3 subareas used for comparisons of abundance and distribution.

Year	Mean	SD	Range	n ^a
1993	231.3	125.9	9–506	115
1994	244.8	126.0	23-478	70
1995	223.0	139.2	7-500	94
1996	245.4	139.2	16-504	46
1997	271.8	124.8	50-499	80
1998	259.3	118.2	17–538	67
1999	195.2	130.3	13–495	66
2000	252.6	134.6	21-494	71
2001	264.5	125.6	13–483	53
2002	229.6	146.2	9–494	76
2003	254.8	152.9	9–495	68
2004	186.7	133.7	3-415	29
2005	261.3	146.4	8–457	22
2006	225.6	142.5	6–498	34
2007	194.6	142.7	4–459	38
2008	160.2	147.5	3–483	47
2009	131.6	102.5	2-431	36

Table 2.Mean distances (m) of Spectacled Eider observations to oilfield facilities during pre-nesting
in the Kuparuk Oilfield, Alaska, 1993–2009. Only observations within the 500-m road
survey area are included.

^a n = number of observations.

Table 3.Habitat use (% of observations) of pre-nesting Spectacled Eiders in the Kuparuk Oilfield,
Alaska, 2009. Includes all observations (both within and outside the 500-m survey area).

Habitat ^a	Percentage of Observations
FRESH WATERS	
Deep Open Water without Islands	4.8
Deep Open Water with Islands or Polygonized Margins	11.9
Shallow Open Water without Islands	26.2
Shallow Open Water with Islands or Polygonized Margins	11.9
Sedge Marsh	4.8
BASIN WETLAND COMPLEXES	
Old Basin Wetland Complex	4.8
MEADOWS	
Nonpatterned Wet Meadow	2.4
Patterned Wet Meadow	2.4
Moist Sedge-Shrub Meadow	4.8
HUMAN MODIFIED	
Drainage impoundment	11.9
Human-created waterbody	14.3
Number of Observations	42

^a Habitat types follow hierarchical habitat classification described in Roth et al. (2007, 2008)

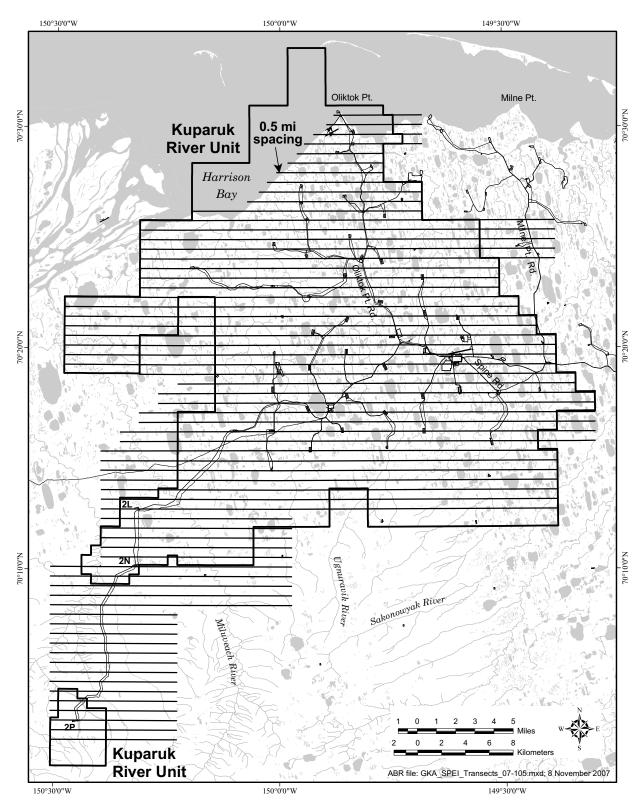


Figure 5. The aerial survey area for Spectacled Eiders in the Kuparuk Oilfield, Alaska, 2009. Transects were spaced 0.5 miles apart. Survey transects were extended in 2008 to conform to the western boundary of the newer Kuparuk River Unit boundary (some areas no longer in the new unit boundary were still surveyed).

	Non-flying	Flying	All Birds
Numbers Observed			
Males	14	2	16
Females	12	0	12
Total Birds	26	2	28
Observed Pairs	11	0	11
Number of Sightings	14	2	16
FWS Indicated Total Birds ^a	28		
Density (birds/km ²) ^b			
Breeding Pairs ^c	0.02	< 0.01	0.03
Total Birds ^d	0.04	< 0.01	0.04
FWS Indicated Total Birds	0.04		

Table 4.	Numbers and densities (per km ²) of Spectacled Eiders recorded during a pre-nesting aerial
	survey of the Kuparuk Oilfield, Alaska, 10–13 June 2009.

^a FWS Indicated Total Birds is calculated according to the standard protocol (USFWS 1987a); flying birds are not counted.

Total indicated birds = (lone males $\times 2$) + (flocked males $\times 2$) + (pairs $\times 2$) + (group total $\times 1$).

1) "lone males" are single, isolated males without a visible associated female;

2) "flocked males" are two or more males in close association (limited to 2–4 males per flock; no females in the flock);

3) a "pair" is a male and female in close association; and

4) a "group" is three or more of a mixed-sex grouping of the same species in close association, which cannot be separated into singles or pairs (one female with two males was considered to be a pair and a lone male, and one female with three males was considered to be a pair and two lone males).

^b Density calculated based on a total area surveyed of 640.4 km².

^c Number of breeding pairs = total males counted not in flocks (flock > 4 males).

^d Unadjusted density of total birds = total birds/km² surveyed.

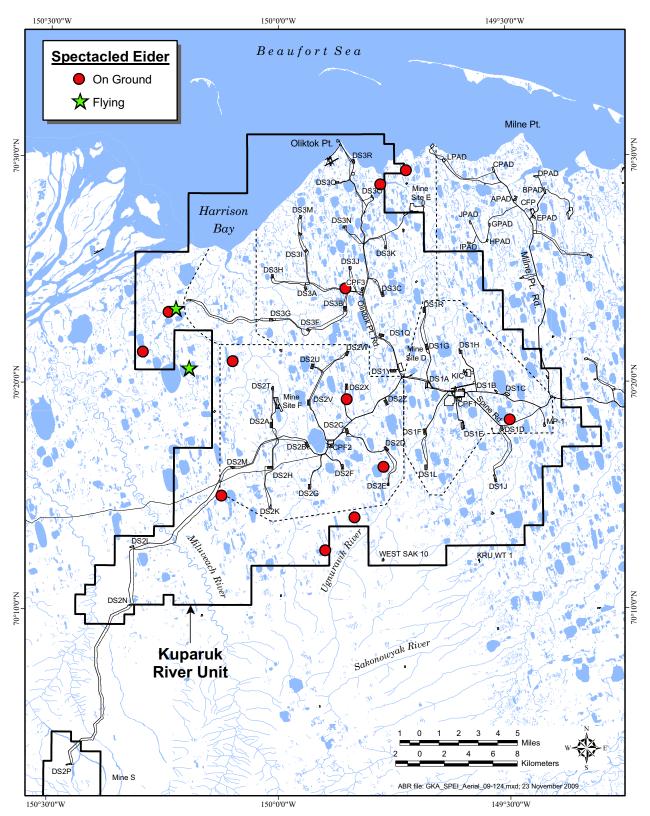
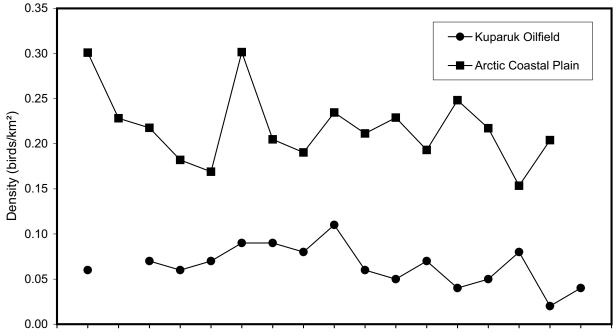


Figure 6. Distribution of Spectacled Eiders observed on the aerial survey of the Kuparuk Oilfield, Alaska, 10–13 June 2009.


	Numbers	Numbers of Eiders Observed	Dbserved			Dens	Density (birds/km ²) ^a	$n^2)^a$	
				FWS	I			FWS	
Year	Non-flying Birds	Flying Birds	Total Birds	Indicated Total Birds ^b	Number of Sightings	Breeding Pairs ^c	Total Birds ^d	Indicated Total Birds	Survey Dates (June)
1993 – First Survey	62	46	125	91	99	0.14	0.24	0.17	12 & 15
1993 – Second Survey	24	17	41	34	26	0.06	0.08	0.06	18-20
1995	32	2	34	39	17	0.04	0.06	0.07	14 - 16
1996	22	18	40	32	24	0.05	0.07	0.06	10 - 14
1997	33	18	51	40	24	0.06	0.09	0.07	12–14, 16
1998	43	15	58	50	32	0.06	0.10	0.09	11-12, 14
1999	26	50	76	50	23	0.08	0.14	0.09	12–13
2000	36	24	60	40	27	0.07	0.11	0.08	13 - 14
2001	54	7	61	58	28	0.07	0.12	0.11	14 - 16
2002	22	5	27	32	22	0.03	0.04	0.06	13-15
2003	27	4	31	44	23	0.04	0.05	0.08	15 - 16
2004	24	б	27	38	21	0.04	0.05	0.07	17 - 18
2005	14	4	18	20	12	0.02	0.03	0.04	13-15
2006	21	б	24	24	14	0.03	0.05	0.05	12–13
2007	46	7	48	27	27	0.04	0.07	0.08	12 - 14
2008	14	7	21	20	14	0.02	0.02	0.03	13-15
2009	26	7	28	28	14	0.03	0.04	0.04	10 - 13

Numbers and densities (per km²) of Spectacled Eiders recorded during pre-nesting aerial surveys of the Kuparuk Oilfield, Alaska, Table 5.

were calculated for the smaller study area used in 1995–1997 because no eiders were recorded in the expanded Tam area surveyed at 50% coverage in 1998. FWS Indicated Total Birds is calculated according to the standard protocol (USFWS 1987a) as described in Table 4; flying birds are not counted. Number of breeding pairs = total males counted (flying and non-flying combined). Unadjusted density of total birds = total birds/km² surveyed (flying and non-flying combined). _

Spectacled Eider

13

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Year

Figure 7. Trends in Spectacled Eider densities (indicated total birds/km²) based on aerial surveys of the Kuparuk River Unit (this study) and across the entire Arctic Coastal Plain, June 1993–2008. A visibility correction factor is not used for these data.

V		Number	Percent	
Year	Total Nests ^a	Successful	Successful	Search Effort ^b
SPECTACLED	EIDER			
1993	17	6	35.3	33
1994	14	5	35.7	24
1995	14	4	28.6	17
1996	16	7	43.8	17
1997	11	3	27.3	13
1998	12	5	41.7	10
1999	5	3	60.0	11
2000	11	7	63.6	13
2001	8	1	12.5	10
2002	18 ^c	9	50.0	11
2003	17^{d}	8	47.1	13
2004	4	0	0.0	10
2005	13 ^e	12	92.3	9
2006	8	5	62.5	12
2007	8	2	25.0	9
2008	6	0	0.0	10
2009	9	5	55.6	10
Mean	11.2	5.1	41.7	
KING EIDER				
1993	16	12	75.0	
1994	19	6	31.6	
1995	8	1	12.5	
1996	17	7	43.8 ^f	
1997	14	1	7.1	
1998	20	5	25.0	
1999	13	2	15.4	
2000	19	8	42.1	
2000	17	3	20.0^{g}	
2002	26	11	42.3	
2002	16	4	25.0	
2003	17	4	23.5	
2005	13	7	53.8	
2005	21	7	33.3	
2000	21	2	9.5	
2008 ^h	33	14	45.2	
2008	17	3	17.6	
Mean	18.1	5.1	41.7	

Table 6.Numbers and fates of eider nests and annual search effort (i.e., number of areas searched) in
the Kuparuk Oilfield, Alaska, 1993–2009.

^a Includes nests for known and probable (based on feather identification) species, but does not include unidentified eider nests (all failed): 1993 = 4 nests; 1994 = 2 nests; 1997 = 2 nests, 2006 and 2007 = 4 nests, and 2009 = 2 nests.

^b Number of distinct areas in the Kuparuk Oilfield searched for Spectacled Eider nests. No areas were searched specifically for King Eiders. UAF researchers searched 3 areas in 2004 and 1 area in 2005 without ABR assistance.

^c Five nests found by Laura Phillips, UAF, during her nest searches for King Eiders were included in this total.

^d Three nests found by Laura Phillips, UAF, during her nest searches for King Eiders were included in this total.

^e One nest found by Rebecca McGuire, UAF, during her nest searches for King Eiders was included in this total.

^f One nest was still active when last checked; therefore, nesting success was based on 16 nests total.

^g Two nests had unknown fates; therefore, nesting success calculated for 15 nests total.

h Two nests had unknown fates; therefore, nesting success calculated for 31 nests total.

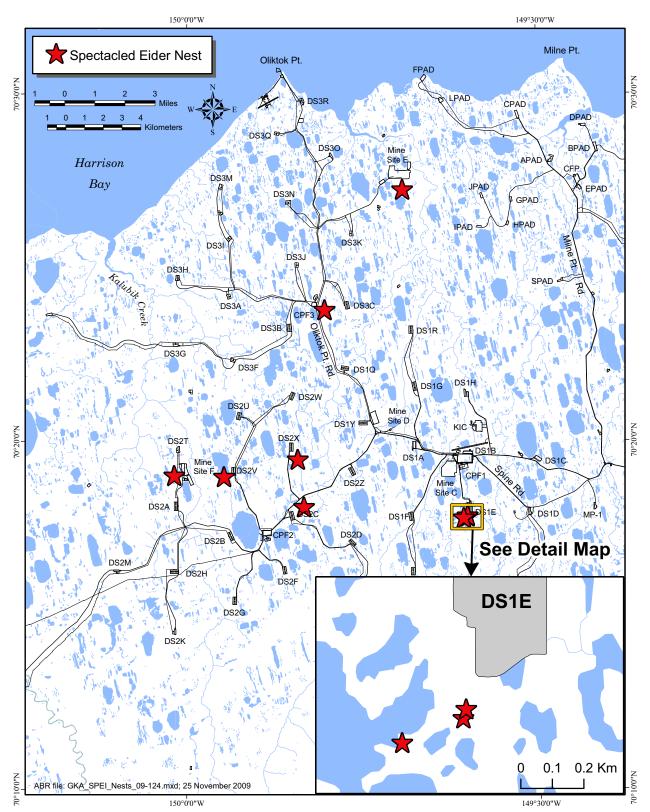


Figure 8. Locations of Spectacled Eider nests in the Kuparuk Oilfield, Alaska, 2009. Two of the nests were determined to be Spectacled Eider based on feather identification.

Table 7. Numbers of Spectacled Eider nests by location in the Kuparuk Oilfield, Alaska, 1993–2009.	of Spe	ctacled	Eider n	ests by	locatior	n in the	Kupan	uk Oilfi¢	eld, Ala	ska, 19	93–200	9.					
Nesting Location	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
COLONIES ^a																	
S of DS-1E	0	1	0	0	0	2 (1)	1	0	0	5	2	0	7	7	2 (1)	1	ю
N of DS-1Y	2 (1)	2 (1)	1(1)	1	1(1)	0	0	1	1	0	-	0	0	0	0	0	0
E of DS-2C	5 (2)	4 (2)	4	4 (1)	3 (2)	7	1	1	4 (3)	0 (2)	2	1	0	1	1(1)	1	1
N of DS-2F	1(1)	1	1	0	0	7	0	1	1	-	0	0	1	0	0,	0	0
N of DS-2K	0	1	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0
W of DS-2V	0	0	1(1)	2	1	0	1	2	0	-	0	1	ю	0	3 (2)	2 (2)	1
S of DS-2T	0	0	0	1	0	0	1	7	1	0	б	0	4	1	0	1	1(1)
S of DS-2X	0	2 (1)	2 (1)	2 (1)	2 (2)	2 (2)	1	1(1)	1	0	2 (1)	0	0	1	1	0	1
W of DS-2X	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0
(CPF-3 Brant Colony)	2 (2)	2 (1)	0	3 (2)	1(1)	4 (3)	0	1(1)	0	2	1	0	1	1	0	1 (1)	1
S of Pit E	0	0	2 (1)	1	7	0	0	0	0	0	7	1 (1)	0	1	1 (1)		1 (1)
ANNUAL LOCATIONS ^b																	
N of CPF-2	0	0	0	0	0	0	0	1 (1)	0	0	0	0	0	0	0	0	0
N of DS-2H	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
DS-3N	0	0	0	1	1(1)	0	0	0	0	0	0	0	0	0	0	0	0
DS-3Q	0	1(1)	1(1)	1	0	0	0	0	0	0	0	0	0	0	0	0	0
N of CPF-3	1 (1)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Colonies were locations that supported more than one nesting I	supported 1	more than	one nestir	ıg pair in a	pair in at least one year.	year.											
One nest that may have been a Spectacled Eider was located here, but species could not be confirmed with feather samples	a Spectacle	ed Eider w	vas located	l here, but	species co	uld not be	confirme	d with feat	her sample	SS							

Feature		Known	Nests	All Nests ^a				
Year	Mean	SD	Range	п	Mean	SD	Range	n
WATER								
1993	3.0	3.2	0.2-10	8	2	2.4	0.2–10	17
1994	0.7	1.2	0.1–4	8	0.8	1	0.1–4	14
1995	2.4	2	0.5–7	9	2.1	2	0.5–7	15
1996	0.6	0.8	0.1–3	12	1	1.6	0.1–6	16
1997	5.4	9.7	0.1-20	4	2.9	5.8	0.1–20	7
1998	0.8	0.7	0.1–2	6	2.3	4.2	0.1-15	12
1999	5.7	10.8	0.5-25	5	5.7	10.8	0.5-25	5
2000	0.7	0.5	0.1-1.5	8	1	0.9	0.1–3	11
2001	0.8	0.7	0.2-2.0	5	1	1	0.1–3	8
2002	0.5	0.5	< 0.1-2	15	0.4	0.4	< 0.1-2	18
2003 ^b	2.5	5	0.1-20	15	2.6	4.9	0.1–20	16
2004	0.5	0.5	0.1 - 1	3	2.9	4.8	0.1-10	4
2005	3.0	8.1	0.1-30	13	3	8.1	0.1-30	13
2006	0.2	0.2	0.1-0.5	6	0.3	0.2	0.1-0.5	8
2007	0.6	0.8	0.1-1.5	3	4.2	10.4	0.1-30	8
2008	0.4	0.1	0.3-0.5	3	0.4	0.3	0.1 - 1	6
2009	1.5	1.8	0.1–5	7	1.6	1.6	0.1–5	9
WATERBODY								
1993	3.7	3.5	0.2–10	8	2.5	2.7	0.2–10	17
1994	1.3	1.9	0.1–5	8	2.5	5.2	0.1–20	14
1995	8.4	6.2	0.5-15	9	9.6	8.2	0.5–30	15
1996	0.6	0.8	0.1–3	12	2	3.8	0.1-15	16
1997	5.4	9.7	0.1–20	4	4.4	6.4	0.1–20	7
1998	1.4	1.9	0.1–5	6	3.9	5.5	0.1-15	12
1999	16.3	21.3	0.5 - 50	5	16.3	21.3	0.5–50	5
2000	17.1	27.3	0.1–75	8	13.8	23.6	0.1–75	11
2001	13.6	20.6	1.0-50	5	11.5	16.8	1.0-50	8
2002	4.6	11	<0.1–40	15	3.9	10.1	<0.1–40	18
2003 ^b	24.8	36.9	0.2-100	15	23.6	35.9	0.2-100	16
2004	2.1	0.5	0.3–4	3	3.7	4.5	0.3–10	4
2005	27.2	31.4	0.5-100	13	27.2	31.4	0.5-100	13
2006	6.9	10.6	0.3–25	6	10.2	15.2	0.3–40	8
2007	0.7	0.7	0.1-1.5	3	12.8	17.2	0.1–40	8
2008	31.8	27.3	0.4–50	3	16.2	24.3	0.1-50	6
2009	9.4	9.8	0.1–25	7	10.5	10.3	0.1–25	9

Table 8.Distances (m) of Spectacled Eider nests to the nearest water, waterbody, and oilfield
infrastructure (road or pad) in the Kuparuk Oilfield, Alaska, 1993–2009.

Feature		Known Nests					All Nests ^a				
Year	Mean	SD	Range	n	Mean	SD	Range	п			
OILFIELD IN	NFRASTRUCTU	RE									
1993	540	149	353-742	8	500	180	123-742	17			
1994	514	206	162-801	8	498	209	162-855	14			
1995	427	102	239-591	9	430	156	208-823	15			
1996	420	194	114-872	12	425	178	114-872	16			
1997	521	144	345-662	4	479	221	82–900	7			
1998	372	85	345-662	4	454	160	212-718	12			
1999	398	167	194–598	5	398	167	194–598	5			
2000	325	160	138–666	8	349	154	138–666	10 ^c			
2001	549	390	315-1,240	5	491	306	315-1,240	8			
2002	384	200	52-723	15	407	194	52-723	18			
2003	463	217	177-896	16	456	212	177-896	17			
2004	478	298	129-804	3	499	247	219-804	4			
2005	389	157	68-665	13	389	157	68–665	13			
2006	406	108	264-531	6	409	94	264-537	8			
2007	334	89	233-402	3	407	106	233-546	8			
2008	252	114	142-369	3	364	146	142-501	6			
2009	317	144	108-469	7	355	149	108-551	9			

Table 8. Continued.

^a All nests includes known and probable (based on feathers) nests.
 ^b One Spectacled Eider nest did not have distance to the nearest waterbody or water.
 ^c One probable Spectacled Eider nest excluded from the analysis because its precise location was unknown.

TUNDRA SWAN

Tundra Swans are an important component of the waterbird community in northern Alaska. In addition, the health of the Tundra Swan population in the oilfields is considered an indicator of the overall health of waterbird populations and their wetland ecosystems. Accordingly, swans have received considerable attention from both the oil industry and regulatory agencies, especially when planning and permitting new developments. ConocoPhillips Alaska, Inc., traditionally has included Tundra Swans in their environmental planning for the oilfields. For example, nest and brood locations for Tundra Swans are identified on environmental sensitivity maps for oil-spill response in the Kuparuk and Prudhoe Bay oilfields, and avoidance of traditional swan nest sites is a consideration when planning new infrastructure. Current and long-term information on the local abundance, distribution, productivity, and population trends of swans are essential to these planning programs and assessments. After preliminary reconnaissance surveys in 1988, ABR has monitored these population parameters annually since 1989 in a number of areas, including the Kuparuk study area, by conducting systematic aerial surveys during nesting and brood-rearing (Anderson et al. 2009).

The Tundra Swan study had two objectives in 2009:

- 1. locate and map the distribution of nests and enumerate adults during nesting; and
- 2. locate and map the distribution of broods, enumerate adults and young, and assess productivity of swans during brood-rearing.

2009 RESULTS

- Aerial surveys were flown to collect information on Tundra Swan abundance and distribution during the nesting and brood-rearing periods in 2009. The nesting survey was conducted during 20–25 June 2009 and the brood-rearing survey during 18–21 August 2009.
- To streamline analysis and allow comparable annual datasets, we divided the 2009

data into two study areas with historically different levels of survey effort. The 'Kuparuk' study area (2,380 km²) comprised all regions that were consistently surveyed in all years of the study, including a section that was formerly part of the Oil and Gas Lease 54 (Figure 9). The 'South Kuparuk' study area (375 km²) comprised areas with inconsistent coverage prior to the last several years. The South Kuparuk data are presented in Appendix 4 and results for the Kuparuk study area are reported below.

- During the nesting aerial survey, 512 Tundra Swans were recorded at 318 locations in the Kuparuk study area (Table 9; Appendix 5). The number of swans was the third highest recorded since 1989 and swan density (0.22 swans/km²) in 2009 was 22% higher than the long-term mean for the study area (Appendix 6). Although the number of swans observed in 2009 was relatively high, it was 12% lower than the record high number (580) of swans observed in 2008. The number of adult swans in the Kuparuk study area has increased significantly since 1989 ($r^2 = 0.37$, P < 0.01).
- In 2009, 96 Tundra Swan nests (0.04 nests/km²) were found in the Kuparuk study area (Figure 10), a 5% decrease from 2008 (Table 9), but 10% higher than the 21-year mean (87.3 nests: 1989–2009). Since 1989, total numbers of nests has increased significantly in the oilfield $(r^2 = 0.25 P = 0.02)$, although numbers have fluctuated annually. The annual number of swan nests is highly correlated with spring temperatures encountered by swans during the arrival and nest initiation period (15 May–15 June), with fewer nests being active during years with low cumulative thawing degree-days and more nests being active during years with high cumulative thawing degree-days (Figure 11). The continued high number of nests in 2009 likely was influenced by favorable weather conditions in the study area at the time when swans would be initiating nests (i.e., rapid

snow melt at the end of May and warmer than average temperatures in early June).

- During the brood-rearing survey, 896 swans (828 adults and 68 young) were observed at 374 locations in the Kuparuk study area (Table 10; Appendix 7). The total number of swans recorded during brood-rearing in 2009 was 28% higher than the 20-year mean (701 total swans), but 6% lower than the record numbers in 2008 (964). The number of adults increased 61% between June and August 2009, due to a substantial increase in the number of nonbreeding adults (+110%) accompanied by a 57% decrease in the number of breeding adults. The decrease in the number of breeding adults between June and August 2009 probably reflects the conversion of breeding swans into the failed/nonbreeding swan count. These latter swans would consist of those with nests that failed or broods that were lost before the August survey, as well as swans that had never attempted breeding.
- In 2009, 33 broods (68 young) of Tundra Swans were counted in the Kuparuk study area (Table 10, Figure 12). The number of broods in 2009 was the lowest recorded in the oilfield since monitoring began in

1989. Not only was the number of broods low, the mean brood size of 2.1 young/brood (range = 1-5 young) was 9% lower than the 20-year mean (2.3 young/brood) and the third lowest mean brood-size recorded during the study. The percentage of broods with three or more young (24%) was 41% lower than the long-term mean and second lowest percentage ever recorded. Young swans represented only 8% of the total swans in 2009, compared to the long-term average of 24%. Approximate nesting success of 34% in 2009 was poor by comparison with the long-term average of 80%. Annual nesting success and clutch size of Tundra Swans have been correlated to weather conditions in the nesting area, with cool springs typically associated with lower nesting success than warmer springs. However, poor weather conditions during late incubation have been known to offset the influence of warm springs and affect nesting success. In 2009, early snowmelt and above average temperatures that were favorable to swans during nest initiation may have been counteracted by the cold, windy period in mid-late June 2009, although no direct cause-and-effect relationship can explain the low nesting success this year.

Tundra Swan

Figure 9. The aerial survey areas for Tundra Swans in the Greater Kuparuk Area, Alaska, 2009.

Table 9.Numbers of Tundra Swans and nests observed during June aerial surveys in the Kuparuk
study area, Alaska, 1989–2009. Swans and nests recorded in the South Kuparuk study area
are presented in Appendix 4 and a more detailed description of survey results for 2009 is
presented in Appendix 5.

		Obse	rved Number of Ad	Estimated Number of Adults ^a			
Year	Nests	With Nests	Without Nests	Total	Breeders	Nonbreeders	
1989	45	71	190	261	90	171	
1990	77	126	170	296	154	142	
1991	81	115	275	390	162	228	
1992	79	128	233	361	158	203	
1993	70	118	231	349	140	209	
1994	50	67	257	324	100	224	
1995	107	181	284	465	214	251	
1996	122	215	269	484	244	240	
1997	75	121	242	363	150	213	
1998	108	203	372	575	146	359	
1999	73	119	235	354	170	208	
2000	85	142	361	503	166	333	
2001	83	149	280	429	166	263	
2002	115	195	294	489	230	259	
2003	74	114	309	423	148	275	
2004	92	141	244	385	184	201	
2005	89	149	248	397	178	219	
2006	95	142	235	377	190	187	
2007	116	189	323	512	232	280	
2008	101	165	415	580	202	378	
2009	96	152	360	512	192	320	

^a The estimated number is based on the assumption that all nests are attended by a nesting pair, so breeders = nests $\times 2$, whereas nonbreeders = total adults – breeders.

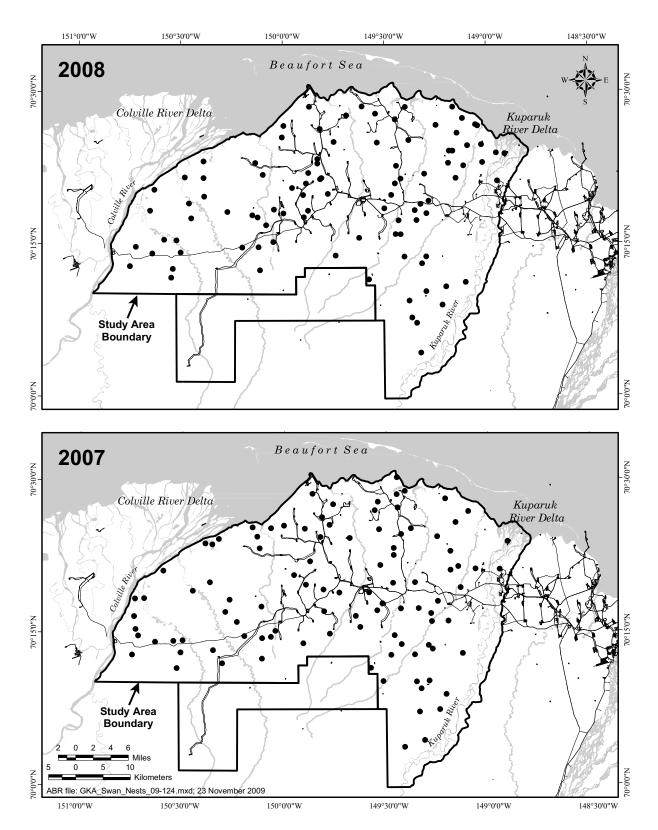


Figure 10. Locations of Tundra Swan nests observed in the Kuparuk and Kuparuk South study areas, Alaska, June 2008 and 2009 (see Figure 9 for study area boundaries).

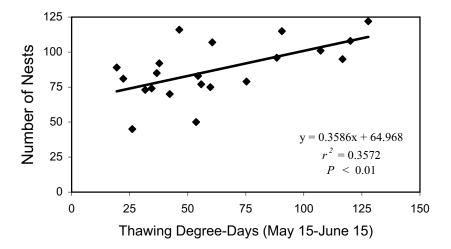


Figure 11. Numbers of Tundra Swan nests by year in relation to cumulative thawing degree-days between 15 May–15 June, in the Kuparuk study area, Alaska, 1989–2009.

Table 10.Numbers of Tundra Swans and broods observed during August aerial surveys in the Kuparuk
study area, Alaska, 1989–1993, 1995–2009. No brood-rearing survey was conducted in 1994.
Swans and broods recorded in the South Kuparuk study area are presented in Appendix 4 and
a more detailed description of survey results for 2009 is presented in Appendix 7.

				Observed Adults		_		Estimate	d Adults ^a	
Year	No. Broods	No. Young	Mean Brood Size	With Broods	Without Broods	Total	Total Swans	Percent Young	Breeders	Non- breeders
1989	45	103	2.3	84	319	403	506	20.4	90	313
1990	75	208	2.8	147	285	432	640	32.5	150	282
1991	69	175	2.5	134	373	507	682	25.7	138	369
1992	73	194	2.7	145	339	484	678	28.6	146	338
1993	72	179	2.5	141	332	473	652	27.5	144	329
1995	82	222	2.7	159	343	502	724	30.7	164	338
1996	99	271	2.7	187	331	518	789	34.3	198	320
1997	60	134	2.2	118	483	601	735	18.2	120	481
1998	74	172	2.3	141	391	532	704	24.4	148	384
1999	45	110	2.4	92	372	464	574	19.2	90	374
2000	56	113	2.0	107	579	686	799	14.1	112	574
2001	71	151	2.1	141	413	554	705	21.4	142	412
2002	69	173	2.5	137	342	479	652	26.5	138	341
2003	60	113	1.9	118	358	476	589	19.2	120	356
2004	97	211	2.2	185	385	570	781	27.0	194	376
2005	57	111	1.9	111	346	457	568	19.5	114	343
2006	87	171	2.0	135	318	483	654	26.1	174	309
2007	81	180	2.2	158	416	574	754	23.9	162	412
2008	97	256	2.6	182	508	690	946	24.5	194	496
2009	33	68	2.1	65	763	828	896	7.6	66	762

^a The estimated number is based on the assumption that all nests are attended by a nesting pair, so breeders = nests \times 2, whereas nonbreeders = total adults – breeders.

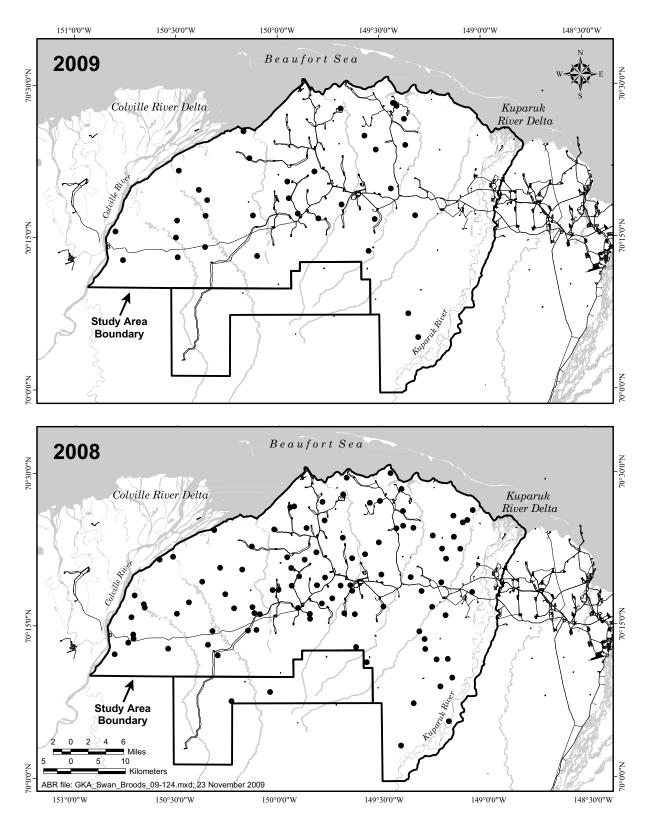


Figure 12. Locations of Tundra Swan broods observed in the in the Kuparuk and Kuparuk South study areas, Alaska, August 2008 and 2009 (see Figure 9 for study area boundaries).

BRANT

A small percentage (<5%; Sedinger et al. 1993) of the Pacific Flyway population of Brant breeds on the Arctic Coastal Plain of Alaska. Prior to the mid-1980s, information on the distribution, abundance, and nesting success of Brant in this area was collected only sporadically. In 1966, King (1970) surveyed the entire Arctic Coastal Plain of Alaska and saw large flocks of nonbreeding Brant (~25,000 total). Flocks of nonbreeders also were noted in previous years by Hansen (in King 1970). Unlike Hansen, however, King also saw brood-rearing groups of Brant, indicating the presence of a nesting population on the coastal plain. In the late 1970s to early 1980s, Gavin (1977, 1980) also noted locations of nesting Brant during aerial surveys of the central Arctic Coastal Plain where oil production was taking place.

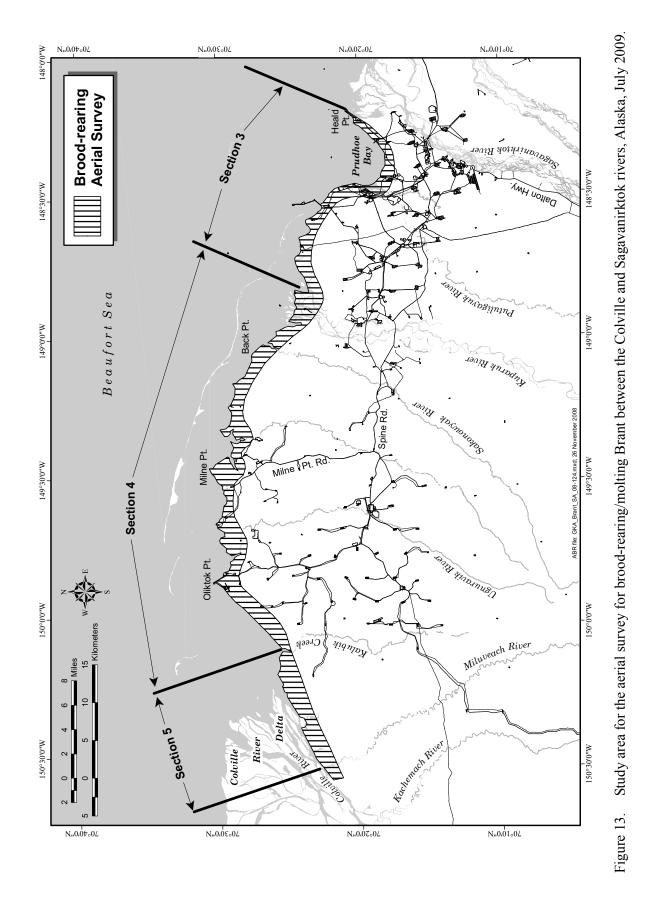
Within the oilfields, Brant can be found breeding in scattered smaller colonies (e.g., Surfcote and near Lake Colleen in Prudhoe Bay, near CPF-3 and DS-2C in Kuparuk, and near C Pad in the Milne Point area) and in several larger colonies (e.g., Howe Island on the Sagavanirktok River delta, and on the northern Colville River Delta). Locations of breeding colonies outside the oilfields are less well known, but some have been mapped in areas surveyed between Kasegaluk Lagoon and the western Colville River Delta (Ritchie et al. 2008). Brood-rearing and molting areas used by Brant are better known, as they are usually located in the relatively limited coastal salt marshes along the Beaufort Sea, including the Fish Creek area, Colville River Delta, Oliktok Point and Milne Point areas, the mouth of the Putuligayuk River, and the Sagavanirktok River. Although the vast majority of molting Brant on the Arctic Coastal Plain are located at Teshekpuk Lake (Bollinger and Derksen 1996), most areas that support brood-rearing Brant on the coastal plain also have small groups of molting birds (i.e., usually failed or nonbreeding birds from nearby nesting colonies) (Ritchie et al. 2008).

Since the mid-1980s, Brant have received considerable attention from both the oil industry and regulatory agencies because of the substantial declines in the Pacific Flyway population that principally breeds on the Yukon-Kuskokwim Delta (Raveling 1984, Sedinger et al. 1993). Brant are traditional in their use of nesting and brood-rearing areas and, hence, are potentially vulnerable to changing conditions in those areas. Brant during brood-rearing, in particular, are sensitive to various types of disturbance associated with oil development, including noise, and vehicular and aircraft traffic. For example, studies in the Lisburne Development Area in Prudhoe Bay found that Brant were more responsive to vehicular greater distances disturbances at during brood-rearing than they were during pre-nesting and nesting (Murphy and Anderson 1993). In contrast, Brant nesting in a colony near Central Processing Facility 3 (CPF-3) in the Kuparuk Oilfield were not significantly disturbed by noise from that facility (Hampton et al. 1988). Thus, the specific disturbance type and relative distance of birds to the disturbance are important factors in determining the relative effects of oilfield-related disturbance on Brant.

Beginning in 1988, surveys supported by ARCO Alaska, Inc. (now ConocoPhillips Alaska, Inc.), have focused specifically on the distribution of nesting and brood-rearing Brant within the Kuparuk Oilfield. Since the early 1990s, aerial surveys have been conducted almost annually during brood-rearing. The objective of the 2009 brood-rearing survey was to count Brant adults and goslings and to locate their brood-rearing/molting areas between Heald Point and the Miluveach River along the Arctic Coast.

2009 RESULTS

- One aerial survey was conducted on 29 July 2009 along three sections of the Beaufort Sea coast between the Sagavanirktok and Colville rivers to locate brood-rearing areas used by Brant and to count numbers of adults and goslings (Figure 13). Brant were counted in 4 brood-rearing (adults with young) groups and 13 molting (adults without young) groups between the Sagavanirktok and Colville rivers, for a total count of 683 birds (597 adults and 86 goslings; Table 11, Figure 14).
- The 683 adult Brant counted in 2009 was well below the annual mean during the 20 years of surveys (1,496), and was the second lowest total ever recorded, including


Brant

the second lowest count of adults in brood-rearing groups and the second lowest count of non- or failed-breeding Brant (i.e., molting groups of adults only). Productivity was also low. Brant goslings comprised 13% of the total number of Brant counted, which was the second lowest percentage ever recorded and well below the annual mean of 33%. The total number of Brant goslings (86) was the second lowest total for goslings and was substantially lower than the annual mean of 535 goslings.

 In Section 4 (Kuparuk River to Kalubik Creek), 427 Brant (371 adults and 56 goslings) were recorded, the fourth lowest count for this section since the surveys began in 1989. Goslings comprised 13% of all birds and 25% of birds in brood-rearing groups, the lowest percentages ever recorded and well below the annual means of 38% and 41%, respectively. The number of goslings in the section (56) was the second lowest ever recorded, considerably below the annual mean of 397 goslings. The number of molting adults without young (198) was the highest ever recorded, reflecting the low productivity of local Brant in 2009.

During the Brant brood-rearing survey, 7 groups (481 adults and 84 young) of Snow Geese (Chen caerulescens) were observed near the Colville River and 1 group (113 adults and 0 young) was observed in Prudhoe Bay. The 481 adult Snow Geese just east of the Colville River represented an increase over previous counts in Section 5, and reflected growth of the nesting colony of Snow Geese on the Colville River Delta in recent years (Johnson et al. 2009). However, the count of 84 goslings represented a sharp decline from 2008 levels (341 goslings in section 5; Anderson et al. 2009), indicating much lower productivity of Snow Geese in the region in 2009.

Brant

y and visual				Total	76	37	81	906	00	41	21	57	908	18	16	72	868	584	03	su	11	846	78	21	683
tom v		3			1,276	2,537	1,681	9	1,700	1,441	1,921	1,157	6	1,318	1,616	1,872	ò	Ś	2,003		2,311	Ś	1,878	2,421	Q
ys in lat either fi		Total Survey Area	Molting	Adults	٢	0	58	119	307	171	76	0	222	185	316	82	69	449	349	su	99	381	490	352	315
al surve ts were		Total Su	earing	Young	512	1,228	657	236	650	562	763	551	283	531	527	832	188	30	719	SU	606	133	433	870	86
and young) and molting (adults only) groups of Brant observed during aerial surveys in late July and is between the Colville and Sagavanirktok rivers, Alaska, 1989-2009. Counts were either from visual s taken during the surveys.			Brood-rearing	Adults	757	1,309	996	551	743	708	1,082	606	403	602	773	958	611	105	935	ns	1,,336	332	955	1199	282
erved du 989-200		River		Total	195	382	510	0	77	0	55	$30^{\rm d}$	su	410	0	0	156	0	205	ns	61	0	0	126	99
rant obse Alaska, 1	n 5	Ailuveach	Molting	Adults	0	0	0	0	0	0	0	0^{q}	ns	0	0	0	0	0	0	ns	0	0	0	0	13
ups of B : rivers, /	Section 5	Kalubik Creek to Miluveach River		Young	86	205	276	0	46	0	33	18^{d}	su	218	0	0	32	0	81	su	33	0	0	64	28
only) gro vanirktok		Kalubik	Brood-rearing	Adults	109	177	234	0	31	0	22	12^{d}	su	192	0	0	124	0	124	ns	28	0	0	62	25
g (adults - ind Sagar ys.		reek		Total	617	,311	709	284	,212	927	,569	1,127	608	702	887	1,418	484	178	1,367	ns	1,686	300	,374	,884	427
l molting Jolville a he surve	1 4	Kalubik C	Molting	Adults	5	0	49	0	69 1	21	20 1	0	82	42	16	0	0	66	0 1	ns	42 1	34	120 1	86 1	198
and young) and molting (and between the Colville and s taken during the surveys	Section 4	Kuparuk River to Kalubik Creek		Young A	255	663	279	124	536	414	718	533	232	290	367	712	140	24	616	ns	743	69	401	759	56
ts and yo ons betwo		Kuparuk	Brood-rearing	Adults Y	357	648	381	160	607	492	831	594	294	370	504	706	344	55	751	ns	901	197	853	1,039	173
Numbers of brood-rearing (adults early August along coastal section observations or aerial photograph:		er		Total	464	844	462	622 ^b	411	514	297	ns	300	206	729	454	228	406	431	ns	564	546	504	411 1	190
ood-reari ong coas aerial p	3	Heald Point to Kuparuk River	Molting		5	8 0	6	119 (238 4	150 5	56 2	ns	140	143 2	300 3	82 4	69 2	350 4	349 4	IIS	24 5	347 5	370 5	266 4	104
of brc ust al ins or	Section 3	to Ku	Mc	1				1	7	1.			1,	1,	æ		-	ŝ	ň			ň	ί	5	1
imbers (Iy Aug servatio	Š	ald Point	Brood-rearing	Young	171	360	102	112 ^b	68	148	12	us	51	23	160	120	16	9	22	us	133	64	32	47	2
. Nu ear ob:		Hei	Brood	Adults	291	484	351	391	105	216	229	ns ^c	109	40	269	252	143	50	60	ns	407	135	102	98	84
Table 11.				Year ^a	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Brant

Numbers for 1989–1993 and 1996 are a mean from two surveys; numbers for 1994, 1995, 1997–2008 are from one survey only. Includes an inland group seen by ground observers. ns = not surveyed. This section only surveyed once that year.

c

a م с

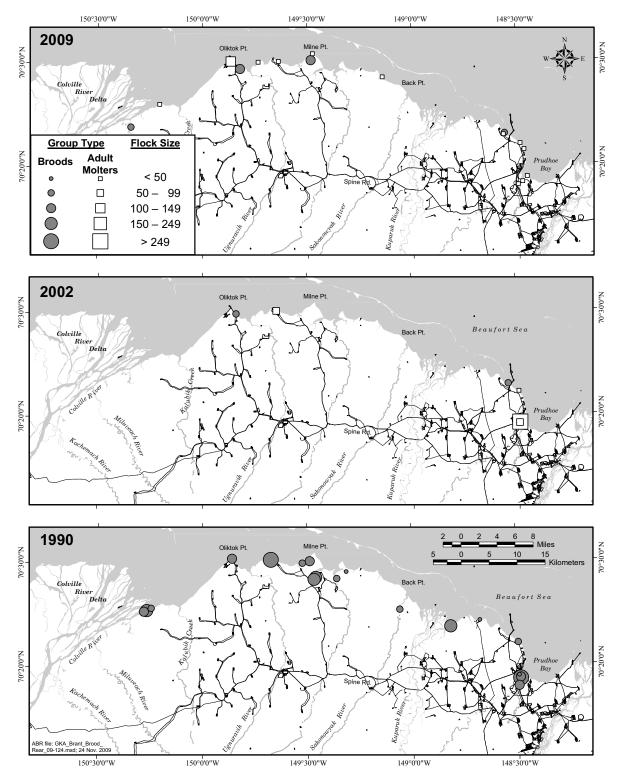


Figure 14. Locations and sizes of brood-rearing (adults and young) and molting (adults only) groups of Brant between the Colville and Sagavanirktok rivers, Alaska, in 1990, 2002, and 2009. The years other than 2009 are for comparison only: 1990 for high numbers of brood-rearing Brant and 2002 for low numbers. Only the survey in 1990 that was flown on a similar date was included for comparability with the single surveys in 2002 and 2009.

LITERATURE CITED

- Anderson, B. A., A. A. Stickney, T. Obritschkewitsch, P.E. Seiser, and J. E. Shook. 2009. Avian studies in the Kuparuk Oilfield, Alaska, 2008. Data report for ConocoPhillips Alaska, Inc., and the Kuparuk River Unit, Anchorage, AK, by ABR, Inc., Fairbanks, AK.
- Anderson, B. A., R. J. Ritchie, A. A. Stickney, J. E. Shook, J. P. Parrett, and L. B. Attanas. 2005.
 Avian studies in the Kuparuk Oilfield, Alaska, 2004. Report for ConocoPhillips Alaska, Inc., and the Kuparuk River Unit, Anchorage, AK, by ABR, Inc., Fairbanks, AK. 83 pp.
- Anderson, B. A., R. J. Ritchie, A. A. Stickney, J. E. Shook, J. P. Parrett, and L. B. Attanas. 2004.
 Avian studies in the Kuparuk Oilfield, Alaska, 2003. Report for ConocoPhillips Alaska, Inc., and the Kuparuk River Unit, Anchorage, AK, by ABR, Inc., Fairbanks, AK. 83 pp.
- Bellrose, F. C. 1976. Ducks, geese, and swans of North America. Stackpole Books, Harrisburg, PA. 544 pp.
- Bollinger, K.S., and D.V. Derksen. 1996. Demographic characteristics of Brant near Teshekpuk Lake, Alaska. Journal of Field Ornithology 67: 141–158.
- Gavin, A. 1977. Ecological and environmental report: Prudhoe Bay region, North Slope of Alaska 1977. Unpublished report for ARCO Alaska, Inc., Anchorage, AK. 17 pp.
- Gavin, A. 1980. An arctic coastal environment, Prudhoe Bay, Alaska. Paper presented to Second Symposium on Management, Conservation, and Utilization of the Coastal Zone, 17–20 November 1980. 20 pp.
- Hampton, P. D., L. C. Orr, and L. Byrne. 1988. An evaluation of the effects of noise on waterfowl in the vicinity of CPF-3, Kuparuk Field, Alaska. Report for ARCO Alaska, Inc., Anchorage, AK, and the Kuparuk River Unit by Environmental Science and Engineering, Anchorage, AK.

- Johnson, C. B., A. M. Wildman, J. P. Parrett, J. R. Rose, T. Obritschkewitsch, and A. A. Stickney. 2009. Avian studies for the Alpine Satellite Development Project, 2008. Sixth annual report for ConocoPhillips Alaska, Inc., and Anadarko Petroleum Corp., Anchorage, AK, by ABR, Inc., Fairbanks, AK. 68 pp.
- Johnson, S. R., and D. R. Herter. 1989. Birds of the Beaufort Sea. BP Exploration (Alaska) Inc., Anchorage, AK. 372 pp.
- Larned, W., R. Stehn, and R. Platte. 2009. Waterfowl breeding population survey, Arctic Coastal Plain, Alaska, 2008. Unpublished report by U.S. Fish and Wildlife Service, Migratory Bird Management, Anchorage, AK. 42 pp.
- Kertell, K. 1991. Disappearance of the Steller's Eider from the Yukon-Kuskokwim Delta, Alaska. Arctic 44: 177–187.
- King, J. D. 1970. The swans & geese of Alaska's Arctic Slope. Wildfowl 21: 11–17.
- Michael Baker, Jr., Inc. 2009. Colville River Delta spring breakup 2009 hydrologic assessment. Report for ConocoPhillips Alaska, Inc., by Michael Baker, Jr., Inc. Anchorage, AK.
- Murphy, S. M., and B. A. Anderson. 1993. Lisburne Terrestrial Monitoring Program—the effects of the Lisburne Development Project on geese and swans, 1985–1989. Final synthesis report for ARCO Alaska, Inc., Anchorage, AK, by Alaska Biological Research, Inc., Fairbanks, AK. 202 pp.
- Raveling, D. G. 1984. Geese and hunters of Alaska's Yukon Delta: management problems and political dilemmas. Transactions of the North American Wildlife and Natural Resources Conference 49: 555–575.
- Ritchie, R. J., R. M. Burgess, J. E. Shook, and T. Obritschewitsch. 2008. Surveys for nesting and brood-rearing Brant and Lesser Snow Geese, Barrow to Fish Creek Delta, and Lesser Snow Goose banding near the

Ikpikpuk River Delta, Alaska, 2007. Annual report for North Slope Borough, Department of Wildlife Management, Barrow, AK, by ABR, Inc., Fairbanks, AK. 62 pp.

- Roth, J. E., P. F. Loomis, M. Emers, A. A. Stickney, and W. Lentz. 2007. An ecological land survey in the central Kuparuk study area, 2006. Report for ConocoPhillips Alaska, Inc., Anchorage, AK, by ABR, Inc., Fairbanks, AK. 57 pp.
- Roth, J. E., and P. F. Loomis. 2008. Integrated-terrain-unit mapping for the NEWS Project Area, 2006. Report for ConocoPhillips Alaska, Inc., Anchorage, AK, by ABR, Inc., Fairbanks, AK. 28 pp.
- Sedinger, J. S., C. J. Lensink, D. H. Ward, R. M. Anthony, M. L. Wege, and G. V. Byrd. 1993. Current status and recent dynamics of the Black Brant *Branta bernicla* breeding population. Wildfowl 44: 49–59.
- Stehn, R. A., C. P. Dau, B. Conant, and W. I. Butler, Jr. 1993. Decline of Spectacled Eiders nesting in western Alaska. Arctic 46: 264–277.

- U.S. Fish and Wildlife Service (USFWS). 1987a. Standard operating procedures for aerial waterfowl breeding ground population and habitat surveys in North America. Unpublished report, Migratory Bird and Habitat Res. Lab., Patuxent Wildlife Research Center, Laurel, MD. 96 pp.
- U.S. Fish and Wildlife Service (USFWS). 1987b. Trumpeter and Tundra swan survey protocol update. Unpublished memorandum by Office of Migratory Bird Management, Juneau, AK. 8 pp.
- U.S. Fish and Wildlife Service (USFWS). 1991. Trumpeter and Tundra swan survey protocol. Unpublished memorandum by Office of Migratory Bird Management, Juneau, AK. 4 pp.
- U.S. Fish and Wildlife Service (USFWS). 1996. Spectacled Eider recovery plan. U.S. Fish and Wildlife Service, Anchorage, AK. 157 pp.

Appendix 1. Methods for avian surveys in the Kuparuk Oilfield, Alaska, 2009.

Brief summaries of methods used for aerial and road surveys, and ground nest searches and nest fate assessments for eiders are presented below; complete methods are presented in Anderson et al. (2004, 2005).

Aerial Surveys

The following table summarizes the aerial survey methods used for conducted for pre-nesting eiders, nesting and brood-rearing Tundra Swans, and for brood-rearing/molting Brant.

Species	Eiders	Tundra	a Swan	Brant
Season	Pre-nesting	Nesting	Brood-rearing	Brood-rearing
Aircraft	C-185/206	C-185/206	C-185/206	SuperCub/Scout
Flight Altitude	30–50 m	150 m	150 m	
Flight Speed	145 kph	145 kph	145 kph	
Number of Observers	2	2	2	1
Survey Type	E-W transects	E-W transects ^a	E-W transects ^a	Coast and selected
	(fixed-width)	(fixed-width)	(fixed-width)	embayments
Transect Spacing	0.5 miles	1.6 km	1.6 km	None, circling of
				larger groups
Transect Width	400 m (200 m	800 m (400 m each	800 m (400 m each	na
	each side)	side)	side)	
Percentage Coverage of	50%	100%	100%	na
Study Area				
Data Collection Media	Photo-mosaic	Photo-mosaic	Photo-mosaic maps	USGS topographic
	maps/ audio tape	maps/USGS		maps/ aerial
		topographic maps/		photographs taken
		aerial photographs		of large groups
		taken of nest sites		

^a This survey followed the standard protocol of the U.S. Fish and Wildlife Service for swan surveys (USFWS 1987b, 1991).

Eider Road Surveys

Road surveys in the Kuparuk Oilfield encompassed all habitats within ~500 m of the road system. The road to the farthest south Meltwater drill site (DS-2P) was surveyed only once to look for areas of suitable habitats for eiders; if none was found, this area was not included in subsequent surveys. In brief, the methodology for road surveys was for a single observer in a truck to drive the roads and count and map (on 1:1000-scale photo-mosaic maps of the oilfield, and electronically on an ArcPad ®-equipped computer) all eiders seen, regardless of distance from the road. In addition to the main roads (Spine Road, Oliktok Point Road) in the oilfield, we surveyed all secondary roads to drill and mine sites, and surveyed around the perimeter of the gravel pad at each drill site to count any eiders near the pad but not visible from the road. The entire study area was surveyed every two days (1/2 of area each day). All observations of eiders were digitized and added to the geographic information system (GIS) database initiated in 1993. Distances of Spectacled Eider observations to the nearest oilfield facility (road or pad) were determined using GIS.

Eider Nest Searches and Nest Fate

Ground searches for eider nests were conducted at selected locations based on where repeated sightings of breeding pairs occurred during the road surveys and where nests were located in

Appendix 1. Continued.

2008. Searchers walked the perimeters of all waterbodies in the selected area and searched for active (females present and incubating) or failed (nest scrapes or bowls) eider nests. Most Spectacled Eiders nest within 25 m of waterbodies, but searches extended out to at least 50 m to ensure coverage. Artificial eggs implanted with temperature sensors (thermistored eggs) were placed in active Spectacled Eider nests for later analysis of incubation constancy. Three time-laps digital cameras (Reconyx R-75) were deployed at active Spectacled Eider nests and located within 30 m of the nest and programmed to record 1 image every 30 seconds.

During July, all nests that still were active when initially located were revisited to determine their final fate (apparent nest success). A nest was considered to be successful if at least one egg hatched (based on presence of a membrane[s] separated from the shell [indicative of hatch] in the nest bowl). Thermistored eggs were retrieved during the nest-fate visit and data were downloaded in the field office for later analysis. The time-lapse cameras were also retrieved when the nests were checked for nest fate and the data (jpeg files) downloaded to DVDs for later review in the office to determine incidences of nest predation. All nest locations were digitized and added to the GIS database. Distances of nests were estimated to the nearest water (any type) and permanent waterbody and nest locations were mapped on the aerial photographs or maps (1:1000), or GPS coordinates were taken at the nest site, so that distance to the nearest oilfield facility (road or pad) could be determined later using GIS.

Tundra Swan analyses

For the analysis of the tundra swan survey data, some assumptions were made. One assumption was that a pair of swans is associated with each nest or brood. The raw survey data includes many observations of a single swan with either a nest or brood, but it is likely that the other swan is out of view at the time of the survey. Therefore, the summaries presented include both the raw survey data and an estimation of the actual number of breeding and non-breeding swans. Breeders are estimated by multiplying the number of nests (or broods) by 2 and non-breeders are estimated by subtracting the estimated number of breeders from the total number of adult swans seen. Estimated nesting success falls into 3 categories: good, fair and poor and is calculated by the number of broods seen divided by the number of nests. This is an estimate only as the brood-rearing survey occurs late in the brood-rearing period, so can not account for brood loss during the intervening time from hatching. Good estimated nesting success is $\geq 80\%$, fair success is $\geq 60\%$ and < 80%, and poor success < 60%.

Data Management and GIS Protocols

After the field surveys are completed all data are entered into databases and proofed. Data collected without accompanying GPS locations (generally all field-mapped data, such as from road surveys and aerial surveys) are provided to the GIS staff for digitizing using the Kuparuk basemap. Final maps are prepared for proofing by the field project leader and standard CPAI protocols are followed in the preparation of databases, metadata, and other map products that are submitted to CPAI for addition to their centralized geodatabase. All field photographs are also compiled following CPAI protocols and submitted along with the databases and GIS products.

			≤500 m					>500 m					Total		
Date	Males	Males Females	Total	Pairs	и	Males	Females	Total	Pairs	u	Males	Males Females	Total	Pairs	и
5 June	4	4	8	4	4						4	4	8	4	4
6 June															
7 June	6	7	16	7	8						6	7	16	7	8
8 June	1	1	0	1	1						-	1	0	1	1
9 June	8	9	14	9	7	1	0	1	0	1	6	9	15	9	8
10 June	б	С	9	б	б						С	б	9	б	б
11 June	4	4	8	4	m	б	б	9	7	б	7	7	14	9	9
12 June	0	0	0	0	0	1	0	1	0	1	б	0	б	0	б
13 June	ŝ	2	5	2	m	1	1	0	1	1	4	б	7	б	4
14 June	б	1	4	1	С						С	1	4	1	б
15 June	1	1	7	1	1	1	0	1	0	1	7	1	б	1	7
Total	38	29	67	29	35	L	4	11	С	7	45	33	78	32	47

-1 -C C -Ż C ÷

									~ ~
Species	General Location	Nest Fate	Clutch Size	Number of Membranes	Habitat	Waterbody Type	Waterbody	Water	Oilfield Infrastructure ^a
Spectacled Eider	DS-IE	Successful	4	3	Sedge Marsh	Sedge Marsh	2.0	2.0	138
Spectacled Eider	DS-!E	Successful	4	2	Sedge Marsh	Sedge Marsh	12.0	0.2	108
Spectacled Eider	DS-!E	Successful	2	2	Sedge Marsh	Sedge Marsh	20.0	1.0	317
Spectacled Eider	DS-2C	Successful	5	1	Sedge Marsh	Sedge Marsh	5.0	5.0	447
Spectacled Eider	DS-2V	Successful	9	5	Deep Open Water	Deep Open Water	0.1	0.1	407
Spectacled Eider	DS-2X	Failed	ю	0	Old Basin Wetland Complex	Shallow Open Water	2.0	2.0	469
Spectacled Eider	CPF-3 Brant Colony	Failed	1	0	Sedge Marsh	Sedge Marsh	25.0	0.1	332
Probable Spectacled Eider	DS-2T	Failed	ż	0	Sedge Marsh	Sedge Marsh	25.0	1.0	421
Probable Spectacled Eider	South of Pit E	Failed	ż	0	Nonpatterned Wet Meadow	Shallow Water with Islands	3.0	3.0	551
King Eider	DS-!E	Failed	ż	0	Shallow Water with Islands	Shallow Water with Islands	1.0	1.0	328
King Eider	DS-!E	Successful	ċ	5	Shallow Water with Islands	Shallow Water with Islands	0.2	0.2	246
King Eider	DS-!E	Failed	ż	0	Shallow Water with Islands	Shallow Water with Islands	1.0	1.0	277
King Eider	DS-!E	Failed	ż	0	Nonpatterned Wet Meadow	Shallow Water with Islands	0.3	0.3	349
King Eider	DS-2C	Unknown ^b	ю	ż	Sedge Marsh	Sedge Marsh	1.0	1.0	676
King Eider	DS-2C	Failed	4	0	Sedge Marsh	Sedge Marsh	5.0	1.0	488
King Eider	DS-2C	Successful	ż	1	Sedge Marsh	Sedge Marsh	1.0	1.0	552
King Eider	CPF-3 Brant Colony	Failed	ż	0	Patterned Wet Meadow	Shallow Water with Islands	5.0	1.0	544
King Eider	CPF-3 Brant Colony	Failed	4	0	Patterned Wet Meadow	Shallow Open Water	5.0	3.0	619
King Eider	CPF-3 Brant Colony	Successful	5	4	Sedge Marsh	Sedge Marsh	10.0	10.0	364
King Eider	CPF-3 Brant Colony	Failed	ċ	0	Shallow Water with Islands	Shallow Water with Islands	3.0	3.0	682
King Eider	South of Pit E	Failed	ż	0	Nonpatterned Wet Meadow	Shallow Water with Islands	1.0	1.0	511
Probable King Eider	CPF-3 Brant Colony	Failed	ż	0	Sedge Marsh	Sedge Marsh	10.0	10.0	309
Probable King Eider	CPF-3 Brant Colony	Failed	ċ	0	Shallow Water with Islands	Shallow Water with Islands	1.0	1.0	199
Probable King Eider	CPF-3 Brant Colony	Failed	ċ	0	Patterned Wet Meadow	Shallow Open Water	5.0	2.0	705
Probable King Eider	South of Pit E	Failed	ż	0	Nonpatterned Wet Meadow	Shallow Water with Islands	0.4	0.4	296
Probable King Eider	South of Pit E	Failed	ż	0	Nonpatterned Wet Meadow	Shallow Open Water	2.0	2.0	445
Unknown Eider	South of Pit E	Failed	ż	0	Nonpatterned Wet Meadow	Shallow Water with Islands	0.7	0.7	471
Unknown Eider	South of Pit E	Failed	ż	0	Nonpatterned Wet Meadow	Shallow Water with Islands	1.0	1.0	503

Nest-site characteristics for successful and failed eider nests in the Kuparuk Oilfield, 2009. Appendix 3.

Numbers of Tundra Swans, nests and broods observed during June aerial surveys in the South Kuparuk study area, Alaska, 1989–2009. Appendix 4.

		Nesting	ng				Brood-rearing	aring		
		Observe	Observed Number of Adults	of Adults			Observe	Observed Number of Adults	f Adults	
Year	Number of Nests	with Nests	without Nests	Total	Number of Broods	Number of Number of Broods Young	with Broods	without Broods	Total	Total Swans
989		2	2	4				2	2	2
1990	1							2	2	2
991			5	5						
992			2	2						
993										
994										
995										
966		1	1	2						
797	1		2	2				1	1	1
998	1		L	7	1	1	1			1
666		2	5	7				L	L	7
000	1		2	2				ю	ю	ю
001		2	2	4				7	7	2
002	1	1	5	9	1	1	7		7	ŝ
003	1		4	4				ю	ю	ŝ
004			9	9						
005		1	4	5				2	7	0
006	1	7	5	7				7	7	7
007	1	7	7	4	1	4	2		7	9
008	0	0	7	7	2	9	4	ω	7	13
000	0	0	,	,	¢	¢	¢			

		Adults v	vith Nests	5		Adul	ts withou	t Nests		
Location (USGS Quadrangle)	Pairs	Single Adults	Total	Number of Nests	Pairs	Single Adults	Flocks	Flocked Swans	Total	Total Swans
Beechey										
Point										
A-4	6	4	16	10	11	11	1	3	36	52
A-5	1	2	4	3	8	5	0	0	21	25
B-4	15	10	40	25	27	22	1	3	79	119
B-6	19	12	50	31	27	32	2	6	92	142
Harrison Bay			0	0						
A-1	3	3	9	6	4	8	0	0	16	25
A-2	2	1	5	3	3	5	0	0	11	16
B-1	9	7	25	16	22	19	4	19	82	107
B-2	1	1	3	2	4	6	3	15	29	32
Total	56	40	152	96	106	108	10	46	366	518

Appendix 5.	Numbers of Tundra Swans and nests recorded (by USGS quadrangle) during aerial
* *	surveys in the Kuparuk and South Kuparuk study area, Alaska, 20–25 June 2009.

			Adults	
Year	Nests	with Nests	without Nests	Total
1989	0.02	0.03	0.08	0.11
1990	0.03	0.05	0.07	0.12
1991	0.03	0.05	0.12	0.16
1992	0.03	0.05	0.10	0.15
1993	0.03	0.05	0.10	0.15
1994	0.02	0.03	0.11	0.14
1995	0.04	0.08	0.12	0.20
1996	0.05	0.09	0.11	0.20
1997	0.03	0.05	0.10	0.15
1998	0.03	0.09	0.16	0.24
1999	0.04	0.05	0.10	0.15
2000	0.03	0.06	0.15	0.21
2001	0.03	0.06	0.12	0.18
2002	0.05	0.08	0.12	0.21
2003	0.03	0.05	0.13	0.18
2004	0.04	0.06	0.10	0.16
2005	0.04	0.06	0.10	0.17
2006	0.04	0.06	0.10	0.16
2007	0.05	0.08	0.14	0.22
2008	0.04	0.07	0.17	0.24
2009	0.04	0.06	0.15	0.22

Appendix 6. Densities (number/km²) of Tundra Swans nests and adults observed during June aerial surveys in the Kuparuk study area, Alaska, 1989–2009. Densities are not calculated for the smaller South Kuparuk study area (357.7 km²).

Numbers of Tundra Swans and broods recorded (by quadrangle) during aerial surveys in the Kuparuk and South Kuparuk study Appendix 7.

			Brood Groups	Groups				Non	Non-brood Groups	roups		Total	tal	
Location						Mean								
(USGS		Single Total	Total			Brood		Single		Flocked	Total			Percent
Quadrangle)	Pairs	Adults	Adults	Adults Broods Young	Young	Size	Pairs	Adults	Flocks	Swans	Adults	Adults	Swans	Young
Beechey Point														
A-4	2	0	4	7	б	1.5	27	9	б	15	75	79	82	3.7
A-5	1	0	2	1	1	1.0	6	5	б	6	32	34	35	2.9
B-4	б	0	9	б	5	1.7	53	11	13	51	168	174	179	2.8
B-5	12	1	25	13	29	2.2	69	20	13	100	258	283	312	9.3
			0								0			
Harrison Bay			0								0			
A-1	б	0	9	б	11	3.7	10	4	7	10	34	40	51	21.6
A-2	1	0	2	1	7	2.0	9	×	1	б	23	25	27	7.4
B-1	6	0	18	6	16	1.8	37	16	13	54	144	162	178	9.0
B-2	1	0	7	1	1	1.0	5	7	б	23	35	37	38	2.6
Total	32	1	65	33	68	ر 1	216	77	51	290	760	027	000	4 1